

Highlights

- Low-Shot Robustness: Study the effect of limited (~10⁴ images) in-domain (ID) data on out-of-distribution (OOD) robustness
- No single model or initialization is consistently more robust across multiple datasets and natural shifts
- **Existing robustness interventions often fail to improve** robustness across different data regimes

2 Motivation

• Task of interest: Visual classification under natural distribution shifts

Train / Fine-tune model on in-domain data

Hoffman

ALLab

Test model out-of-the-box on OOD data

Standard paradigm: Existing works for evaluating and improving robustness almost always assume access to a large amount (~10⁶) of in-domain (ID) data

Step-2

Pre-train on ungodly amounts of internet data

Fine-tune on "lots" of labeled data

Step-3

(Maybe) Apply robustness interventions

- The extent to which the current observations hold for a lesser amount of ID data remains unknown
- Low-Shot Robustness Setting: Pre-trained model with a classifier head is trained on few ID images

Step-2

Fine-tune on "lots" Fine-tune on "less" labeled data of labeled data

Benchmarking Low-Shot Robustness to Natural Distribution Shifts

Aaditya Singh*†, Kartik Sarangmath*, Prithvijit Chattopadhyay, Judy Hoffman Georgia Institute of Technology

Low-Shot Robustness Setting

(a) Low-Shot Finetuning

• We consider three distinct natural distribution shifts

In-domain data

(few images)

• We consider three low-shot regimes of increasing difficulty

- Models and Interventions to Improve Robustness:
 - ImageNet (IN1k) pre-trained models: Supervised ResNet and ViT (DEIT), Self-supervised (SSL) ResNets (SwAV, DINO) and ViTs (MSN, DINO)
 - **Classifier heads:** Logistic Regression, Mean-Centroid Classifier, Baseline++
 - Robustness interventions: LP-FT, CLIP, WiSE-FT, Model Soups, RobustViT
- We use the effective robustness framework for considering the effect of ID accuracy while comparing OOD robustness
- Use a bank of standard models to establish "baseline" expectations
- A method that **exceeds** expectations is effectively robust
- We study this phenomena in various low and full-shot and regimes

Step-4

Evaluate on test data

Dotocot	Low-Shot Regimes (Imgs / Class)					
Dataset	Extreme	Moderate	High			
1 ImageNet [5]	1	5	~ 13			
2 iWildCam [18]	1 - 480	1 - 4802	1 - 9604			
3 Camelyon [20]	1500	7500	15000			

Findings

Amongst IN1k pre-trained models, SSL ViTs are often more robust but no single initialization or model size is the best across datasets

	ImageNet		iWildCam		Camelyon	
	$ ho\uparrow$	$ au\uparrow$	$ ho\uparrow$	$ au\uparrow$	$ ho\uparrow$	$\tau\uparrow$
Full-Shot Regime						
1 LP-FT [15]	5.16	-0.61	-1.41	-0.17	-0.45	7.48
2 + CLIP	19.60*	13.77*	-3.60	-6.09	0.37	11.28
3 WiSE-FT [16]	6.66	-0.86	-3.84	-5.87	6.22	12.66
4 + CLIP	22.24*	16.41*	3.98	4.78	2.85	14.18
5 Model Soups [16]	0.53	-10.58	-0.93	-0.14	-0.35	11.68
6 + CLIP	11.00^{\dagger}	4.29 [†]	3.20	-4.84	5.93	9.50
7 RobustViT [68]	6.73	1.13	N/A	N/A	N/A	N/A
8 CLIP zero-shot [4, 16]	30.28	10.79	8.46	-23.167	-14.63	-28.54

PARIS

	Imag	eNet	iWildCam		
	ID	OOD	ID	OOD	
1 MSN ViTS-16 [14]	58.99	21.51	26.41	19.99	
2 DINO ViTS-16 [21]	53.78	19.09	24.78	19.75	
3 MSN ViTB-16 [14]	61.40	22.81	24.78	19.65	
4 DINO ViTB-16 [21]	56.72	21.98	27.40	19.82	

Without additional interventions, CLIP is worse than IN1k ViTs on datasets other than ImageNet

	ImageNet		iWildCam		Camelyon	
	ID	OOD	ID	OOD	ID	OOD
1 CLIP zero shot [4, 16]	67.93	57.37	9.67	16.82	50.48	51.55
2 CLIP [4]	50.8	27.50	23.75	19.10	84.9	77.3
3 MSN (IN1k) [14]	61.40	22.81	24.78	19.65	86.40	78.84
4 DINO (IN1k) [21]	56.72	21.98	27.40	19.82	86.93	84.33

Robustness in full-shot regime \Rightarrow robustness in low-shot regimes, as interventions fail to consistently 1 robustness, except CLIP with WiSE-FT

Intervention performance is largely dataset and model dependent, but weight-space ensembling [1] is promising for low-shot robustness

We hope to motivate researchers to focus on this practically important setting!

[1] Wortsman, et al. "Robust fine-tuning of zero-shot models." CVPR. 2022.