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The sides of the mountain is where things grow, experience is gained and technologies are

mastered. The importance of the peak lies only in the fact that it defines the sides.
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SUMMARY

As deep learning based models continue to advance several artificial intelligence appli-

cations including safety-critical ones, it becomes increasingly important that such models

are reliable even under distribution shifts. Moreover, as better models trained on increas-

ingly larger datasets are becoming publicly available, the expectation from a practitioner

shouldn’t be to train such models on large-scale datasets that might be infeasible to collect.

In this thesis, we focus on two problem settings where out-of-distribution (OOD) per-

formance is measured when the in-domain (ID) training data is limited (i.e. ∼ 103 − 104

images) – (1) unsupervised domain adaptation (UDA) where unlabelled OOD data is avail-

able for training, and (2) robustness to natural distribution shifts, where OOD data is used

for evaluation only. First, we motivate the need for using a more recent family of mod-

els (i.e. self-supervised vision transformers) for UDA and briefly describe our method [1]

which further improves OOD performance. Second, we describe our recent work [2] on

benchmarking robustness to natural shifts with limited ID training data (i.e. low-shot ro-

bustness), including the experimental setup and key results.

Overall, the thesis motivates the need for evaluating state-of-the-art deep learning mod-

els on diverse out-of-distribution shifts when the amount of training data is limited, by

demonstrating that (1) such models can be better utilized for unsupervised domain adapta-

tion and (2) conventional wisdom for out-of-distribution (OOD) robustness (see section 3.3)

might not apply when the amount of in-domain training data is not as high.

xi



CHAPTER 1

INTRODUCTION

1.1 Motivation

Deep Learning has taken the world by storm – with a significant rise in the number of appli-

cations in the past and this decade, ranging from playing the game of Go [3], self-driving

cars [4], to detecting brain tumors [5]. As deep learning based models are increasingly

deployed for real-world and often safety critical applications, it is necessary that they per-

form reliably not only on the dataset(s) used for training and validation, i.e. in-domain (ID)

data but also on different kinds of (out-of) distribution shifts that can be expected after

deployment. Such models often struggle to generalize to data distributions other than the

ones used for training [6, 7, 8]. In this work, we focus on the task of image classification

– where the objective is to classify an image into one of many possible classes – and study

two kinds of problems related to out-of-distribution (OOD) generalization, i.e. domain

adaptation and robustness to natural distribution shifts. We briefly summarize them below.

1.1.1 Domain Adaptation

The goal of domain adaptation (DA) is to transfer a model trained on one (aka source) do-

main to another (aka target) domain. If the target domain doesn’t have class labels for the

images, the setting is referred to as unsupervised domain adaptation (UDA) and has been

extensively studied [9, 10, 11, 12, 13, 14, 15, 16]. A large body of works leverage models

pre-trained on the ImageNet [17] dataset in a supervised manner, i.e. using both the images

and the manually annotated class labels. In recent years, however, researchers have shown

that models pre-trained on such datasets without using the labels, i.e. via self-supervised

learning (SSL) can perform on-par or better than the supervised ones on downstream tasks

[18, 19, 20, 21, 22]. Note that most recent SSL methods [21, 22, 23] use Vision Trans-
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formers (ViTs), that are more computationally efficient [24] and also have better OOD

calibration than Convolutional Neural Networks (CNNs) [25]. While CNNs have largely

been used for UDA and some works have studied self-supervised adaptation [26, 27], no

work thus far has focused on using SSL ViTs for UDA and whether their performance can

be further improved. Thus, we aim to answer the following questions in our work [1]:

Q1. Do recent UDA methods also improve performance with self-supervised (SSL) ViTs?

Q2. Can the emergent properties of SSL ViTs [21] lead to a better adaptation method?

1.1.2 Robustness to Natural Distribution Shifts

Depending on the domains, assuming access to additional data from the target domain

for subsequent model training might not be a fair assumption. For instance, in the case of

detecting rare animal species [28] or the presence of tumors in different hospital scans [29],

it’s unreasonable to expect the practitioner to collect substantial amount of target data after

model deployment. Therefore, robustness studies impose a harsher constraint on the out-

of-distribution (OOD) generalization problem by not assuming access to the target OOD

data, and using it only for evaluation purposes.

Previous works have studied such OOD generalization capabilities of models under

synthetic [30, 31, 32, 33, 34, 35] and natural distribution shifts [36, 37, 38, 39, 40, 41].

Notably, [42] find that robustness interventions used for synthetic shifts offer little to no

improvements for natural shifts through a large-scale study of several supervised models.

Recent methods that provide robustness improvements to such natural shifts utilize self-

supervised [22, 23] or large-scale vision-language pre-trained models such as CLIP [43]

and perform fine-tuning with fully labelled ID datasets [22, 23, 44, 45, 46]. Crucially,

such fine-tuning can be resource intensive and access to large and labelled datasets can be

infeasible, as discussed previously. Thus, in our work [2] we perform a study of robust-

ness to natural shifts in the low-shot regimes – spanning datasets, architectures, pre-trained

initializations, and state-of-the-art interventions – and aim to answer these questions:

2



Q3. Does a single model provide better robustness across datasets in low-shot regimes?

Q4. Does robustness in the full-shot regime imply that in the low-shot regimes?

1.2 Thesis outline

The rest of the thesis is aimed towards answering the questions raised in subsection 1.1.1

and subsection 1.1.2, and is structured as follows.

• In Chapter 2, we focus on domain adaptation with self-supervised ViTs. We describe the

baselines and some key results from our work [1] and provide additional insights.

• In Chapter 3, we explain our recent work [2] on low-shot robustness to natural shifts. We

briefly describe the experimental setting, evaluation metrics, and key results.

• In Chapter 4, we discuss some of the key issues and limitations that we observe in differ-

ent works along with potential future directions to alleviate them.

• In Chapter 5, we conclude our findings to motivate better analysis and evaluation of

visual classification models on out-of-distribution shifts with limited training data.
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CHAPTER 2

ADAPTING SELF-SUPERVISED VISION TRANSFORMERS

Recall from Chapter 1 that methods for unsupervised domain adaptation (UDA) typi-

cally leverage supervised Convolutional Neural Networks (CNNs) or Vision Transform-

ers (ViTs), and it remains unknown whether such UDA methods provide improvements for

self-supervised (SSL) ViTs. We discuss these methods and models in the following section.

2.1 Related Work

Notable paradigms for UDA include (1) domain adversarial learning [11] which aims to

learn a feature representation space that is domain invariant and class discriminative, and

(2) selective self-training [47] which uses a model trained on source domain to obtain

pseudo labels for the target domain, and selectively increase model’s confidence based on

some criterion. While our work [1] follows the latter paradigm, we adopt both kinds of

methods for comparison and summarize them below.

• CDAN [13]. CDAN captures cross-covariance between feature embeddings and clas-

sifier predictions for better class discriminativeness in domain adversarial learning.

• MCC [48]. Minimum Classifier Confusion (MCC) uses the model predictions on

target domain to minimize pair-wise class confusion for aligning domains in a non-

adversarial fashion.

• SENTRY [1]. SENTRY is a selective self-training approach which increases model

confidence on “reliable” target instances and decreases it on “unreliable” ones. The

reliable target instances are the ones for which the model prediction is consistent

across randomly augmented versions of that instance.
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• Shen et. al [27]. They perform contrastive learning [18, 19] on the pooled source

and target domains followed by fine-tuning on the source domain. We adopt their

approach by performing method-specific SSL followed by source fine-tuning.

• TVT [16]. TVT is a UDA method for supervised ViTs which injects a module for

learning transferability into ViT’s attention blocks. It also performs global domain

adversarial alignment and class discriminative clustering.

Compared to these approaches, our method (see section 2.2) is explicitly meant for

adapting some of the most recent self-supervised ViTs such as MAE [22] and DINO [21].

In general, self-supervised learning (SSL) is performed by designing a proxy task for train-

ing models, with the goal of learning feature representations that are useful for many down-

stream tasks. We briefly summarize the SSL approaches for MAE and DINO below.

• MAE [22]. MAE uses the proxy task of masked auto-encoding, i.e. predicting miss-

ing image patches given the remaining ones. The authors find that a large masking

ratio of ∼ 75% not only leads to better feature representations but also meaningful

reconstruction of the missing image patches.

• DINO [21]. DINO jointly trains a student model which sees local and global aug-

mented views of an image, to match the predictions of a teacher model which only

sees the global augmented views. The authors find that aside from useful feature em-

beddings, other properties such as object localization also emerge from this process.

2.2 Method

We briefly describe our method for adapting SSL ViTs which we call Probing Attention-

Conditioned Masking Consistency or PACMAC in this section. The method has 3 stages: (1)

With ImageNet pre-trained SSL ViTs, an additional pre-training step using the same SSL

strategy is performed over the pooled source and target domains. (2) The pre-trained model

5



Figure 2.1: Overview of PACMAC. Left. Model’s attention on the target image is used to
generate disjoint masks that retain highly attended patches of the input image via greedy
allocation strategy. Right. Next, the model’s predictive consistency between original and
masked images is employed to select target instances for self-training.

is fine-tuned in a supervised fashion with the labelled source images. (3) Finally, a selective

self-training step is performed in which model’s confidence is increased on “reliable” target

instances. Reliability is determined by checking whether (a) model’s confidence for an

augmented view of an image is above a certain threshold T , and (b) model’s predictions

are consistent for that view and k randomly augmented and masked (with ratio mr) views.

The masks are obtained by leveraging (SSL) ViT’s attention mechanism, wherein the image

patches are sorted in descending order of attention weights and allocated to the masks

in a greedy round-robin fashion. This strategy allows each mask to retain some of the

highly attended patches, and we leverage the observations from prior work [21] and our

experiments that such patches in SSL ViTs are often semantically meaningful. These masks

are then applied to the k augmented views of the target image, as shown in Figure 2.1.

We find that PACMAC performs better or on-par with the competing methods on average

across shifts in the OfficeHome [49], DomainNet [50, 51], and VisDA [52] benchmarks

across initializations. Results with MAE and DINO on OfficeHome are shown in Table 2.1.
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Table 2.1: Target accuracies. Results with MAE [22] and DINO [21] on OfficeHome [49]
are shown. PACMAC performs better or on-par with the competing methods.

IN1K Init. Method A → C A → P A → R C → A C → P C → R P → A P → C P → R R → A R → C R → P AVG

MAE [22]

source 46.4 57.6 71.0 51.1 60.0 62.6 51.4 46.9 70.5 66.3 52.2 77.2 59.4
CDAN [13] 45.3 58.8 69.1 51.6 60.7 61.5 53.4 45.5 72.4 67.7 49.9 78.0 59.5
MCC [48] 43.9 61.2 70.7 52.8 59.9 62.8 51.1 40.3 70.9 66.2 48.3 76.3 58.7
Shen et al.* [27] 57.1 63.6 71.9 57.9 65.6 67.1 55.5 56.7 71.2 69.0 62.6 79.4 64.8
SENTRY [47] 54.8 65.6 74.4 56.5 65.8 69.8 57.6 54.9 75.5 68.9 60.0 81.6 65.5
PACMAC 58.9 68.2 74.1 60.6 67.1 67.2 57.3 59.2 74.4 68.6 63.9 82.7 66.8

DINO [21]

source 53.1 65.0 75.2 62.0 66.2 70.4 60.8 50.5 77.0 72.8 53.9 81.2 65.7
CDAN [13] 49.0 70.0 76.4 60.0 67.3 71.2 64.7 47.0 79.9 75.1 56.4 81.8 66.5
MCC [48] 44.4 74.2 79.6 61.9 67.6 72.4 63.0 40.1 79.2 73.3 47.1 82.8 65.5
TVT [16] 48.3 65.7 73.6 60.6 68.8 64.6 57.1 44.1 75.4 71.0 53.7 77.2 63.3
Shen et al.* [27] 53.1 69.4 76.7 62.6 68.9 71.4 62.2 51.8 76.0 73.5 56.3 81.8 67.0
SENTRY [47] 59.5 72.0 76.8 66.1 71.1 73.4 63.7 56.2 77.8 72.4 63.0 81.9 69.5
PACMAC 54.9 74.7 79.3 65.7 74.0 74.5 63.3 55.8 79.2 73.1 58.4 83.9 69.7

2.3 Other Experiments: Domain Translation

We admit that our development of an UDA method for SSL ViTs didn’t start with a selective

self-training approach. Rather, we focused on the image reconstruction properties of MAE

[22] from partial inputs. The core idea can be summarized as follows: (1) Train domain

specific MAE decoders to perform reconstruction separately for source and target images.

The expectation is for the decoders to capture domain specific style information. (2) Instead

of optimizing cross-entropy loss for the source image, translate the source image into the

style of the target image with the help of target decoder. The translation step could be

performed with the help of works in neural style transfer (NST) literature.

Note that a large number of NST works use CNNs (notably VGG-19 [53]) as the de-

facto model family [54, 55, 56, 57, 58]. The choice of CNNs is informed by their increas-

ingly complex and hierarchical feature representations [59, 60], which is different from

how ViTs transfer information across the layers [24, 61]. To the best of our knowledge,

works that use ViTs for NST [62] still rely on the same VGG based perceptual losses that

involve tuning many hyperparameters on much larger datasets [63, 64]. Concurrent work

which uses domain specific decoders for multi-source adaptation [65] also relies on several

other components, and their reconstructions still don’t seem to capture domain specific in-
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Source Target ViT + WCT (ours) WCT [53]

Figure 2.2: Stylization Results. We show some stylized images obtained via WCT [56]
with VGG-19 [53] and ViTB-16 [66]. WCT captures the general color palette and textures
well with VGG-19 (see footnote 2) but not with ViTB-16.

formation. Thus, while the idea discussed in this section might be interesting, it isn’t well

aligned with the findings in NST literature and remains hard to implement.

Nonetheless, we perform an oracle experiment with a supervised ViTB-16 [66] by fol-

lowing the general approach of WCT [56]. We briefly summarize this approach as follows:

(1) Freeze the pre-trained ViT encoder and train a ViT decoder [22] to perform image re-

construction 1. (2) Extract the feature representations from nth block of the encoder for

the two source and target images. (3) Apply a feature transform such as AdaIN [55] or

WCT [56] to transfer the “style” of target image onto source image in the feature space.

(4) Reconstruct the stylized image from the stylized feature representation by passing it to

the pre-trained decoder. We use n = 1 as it led to more visually appealing results and show

some stylization results in Figure 2.2. While WCT captures the general color palette and

textures from the target images well with VGG-19 2, it largely fails to do so for ViTB-16.

We omit the results with AdaIN [55] as they often resemble the source image itself.

1We pre-train the IN1k initialized MAE decoder [22] on the Clipart and Product domains in Office-
Home [49] dataset, but find that the reconstructed images for other domains also match the input images.

2WCT [56] is applied at several layers of VGG-19 for enhanced stylization, whereas we only apply it
to the feature representations obtained from the last block of ViTB-16. However, even last layer stylization
results as shown in [56] are much more visually appealing than the ones obtained for ViTB-16 in Figure 2.2.
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Overall, we focus on leveraging Vision Transformers (ViTs) pre-trained with state-of-

the-art self-supervision (SSL) for the unsupervised domain adaptation (UDA) task. We

implement and benchmark existing UDA methods for SSL ViTs, and propose a selective

self-training based method called PACMAC which relies on predictive consistency across

attention-seeded masked views of target images. Our results demonstrate that PACMAC

performs better or on-par with competing methods on standard benchmarks.
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CHAPTER 3

MEASURING LOW-SHOT ROBUSTNESS TO NATURAL SHIFTS

Recall from Chapter 1 that out-of-distribution (OOD) robustness studies and methods lever-

age large amounts of in-domain (ID) labelled data for model fine-tuning, which can be

prohibitive for practitioners due to resource constraints and the nature of datasets such as

rare animal species [28] and hospital scans [29]. Thus, in our work [2] we formulate the

“Low-Shot Robustness” setting in which: (1) We assume access to a model pre-trained

on large scale datasets such as ImageNet [17] (IN1k), and fine-tune the pre-trained model

along with a classifier head with the limited (∼ 103 − 104 images) ID training data. (2)

The fine-tuned model is then evaluated on the OOD test data. The setting is also visually

depicted in Figure 3.1. We briefly summarize the datasets and data regimes, pre-trained

models, and fine-tuning methods that we include in our testbed in the following section.

3.1 Experimental Setting

3.1.1 Datasets & Data Regimes

ImageNet [17] (IN1k). Previous works [22, 23, 67] often measure OOD robustness by

training on full IN1k and testing on some or all of these 5 distribution shifts, i.e. IN-R [40],

IN-S [38], IN-A [39], INv2 [36], and ObjectNet [37]. We include all the 5 distribution

shifts and the low-shot subsets with 1, 5, and 10 images per class subsets provided by [23].

For validation, we use the IN1k val split and report top-1 accuracy. For testing, we follow

previous works [45, 46] and report top-1 accuracy averaged on the 5 distribution shifts.

iWildCam [28]. The iWildCam dataset consists of images of 182 animal species cap-

tured by different camera traps that are considered distribution shifts. We use the WILDS

benchmark [41] to create low-shot subsets with images in 1%, 10%, and 20% ratio from
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Figure 3.1: Low-Shot Robustness Setting. (a) We assume access to a model pre-trained
on large scale datasets (e.g. IN1k), attach a classifier head on top and fine-tune the model
with the few labelled in-domain (ID) images. Different methods for fine-tuning are used
that demonstrate robustness when there is typically order of magnitudes higher training
data. (b) The (low-shot) fine-tuned model is then evaluated on out-of-domain (OOD) data.

train shift for training, given the imbalanced class distribution in the dataset. For valida-

tion, we use the val-id shift which has 7314 images. For testing, we the val-ood shift

which has 14, 961 images. We report per-class accuracy for validation and testing.

Camelyon [28]. The Camelyon dataset consists of histopathological scans that may or

may not contain tumor tissue, i.e. 2 classes. The scans are obtained from different hospitals

that are considered distribution shifts. We again use the WILDS benchmark [41] to create

low-shot subsets with 1500, 7500, and 15000 images per class train shift for training, as

the shifts are well balanced. For validation, we use the val-id shift which has 33, 560

images. For testing, we the val-ood shift which has 34, 904 images. We report per-class

accuracy for validation and testing.

We show sample images from each dataset in Figure 3.2 and refer to the 3 low-shot

regimes discussed previously as extreme, moderate, and high low-shot regimes respectively.
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Figure 3.2: Datasets & Distribution Shifts. Sample images from ImageNet [17] and some
of the associated distribution shifts [40, 38], iWildCam [28], and Camelyon [29] datasets.

3.1.2 Pre-trained Models

We refer to ImageNet pre-trained models as standard models, i.e. trained without additional

interventions or larger datasets. We include the following self-supervised CNNs – SwAV

[68], DINO [21] and ViTs – DINO [21] and MSN [23] as standard models. For datasets

other than ImageNet, we also include the following supervised CNNs – RN50 [69] and

ViTs – DEIT [66]. Note that ImageNet supervised models violate the “low-shot” condition

on ImageNet as they have already been trained with all of the labels. We mostly use the

ViTS-16, ViTB-16, RN50, and RN50w2 model sizes for the different datasets.

The BS-CDFSL [70] study shows that simpler transfer learning baselines outperform

meta-learning approaches on the cross-domain few-shot learning task, hence we compare

the 3 classifiers – Logistic Regression [71, 23], Mean-Centroid Classifier [72], and Base-

line++ [73] – and choose the best performing ones. While Logistic Regression performs

well on ImageNet and iWildCam datasets, Baseline++ performs better on Camelyon.
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3.1.3 Fine-tuning Methods

Recent works that achieve impressive robustness gains on some of the datasets and dis-

tribution shifts (see subsection 3.1.1) in the full-shot regime either perform (1) strategic

fine-tuning (LP-FT [44], RobustViT [67]) or (2) weight-space ensembling (WiSE-FT [45],

Model Soups [46]). We incorporate all of these methods in our testbed as robustness inter-

ventions and briefly describe them below.

• LP-FT [44]: LP-FT follows a two-stage training process in which a randomly ini-

tialized linear head is trained first followed by fine-tuning the entire model (with the

trained head) end-to-end.

• WiSE-FT [45]: WiSE-FT uses a weight-space ensemble to combine a zero-shot

model such as CLIP [43] with the fully fine-tuned model. For IN1k pre-trained mod-

els, we ensemble LP and LP-FT checkpoints due to absence of a zero-shot head.

• Model Soups [46]: Model Soups uses a weight-space ensemble of a linear-probed

model that is then trained with randomly sampled epochs, learning rates, weight

decay, label smoothing [74], mixup [75], and RandAugment [76].

• RobustViT [67]: RobustViT employs an unsupervised object localization method

such as TokenCut [77] to generate offline segmentation maps. A supervised ViT

is then trained such that it’s saliency maps [78] resemble the offline ones and its

classification accuracy is maintained.

Note that most of these methods use vision-language models such as CLIP [43], whereas

we adopt them for both CLIP and ImageNet pre-trained initializations. We also include

zero-shot CLIP [43, 45] as a robustness intervention owing to its strong performance on

robustness benchmarks. For RobustViT, we first perform a linear-probing step for self-

supervised ViTs on ImageNet, but the method remains hard to implement for other and

especially non object-centric datasets due to its requirement of offline segmentation maps.
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3.2 Evaluation Metrics

Evaluating the absolute performance of a model using out-of-distribution (OOD) shifts may

indicate robustness, but does not take into account the model’s in-domain (ID) performance.

As noted by [42], models with similar OOD performance may have significantly different

ID performances. A more comprehensive definition of robustness should consider OOD

performance beyond what is expected from achieving a certain level of ID performance.

Therefore in addition to comparing absolute performance to measure robustness, we adopt

the effective and relative robustness framework used by prior works [36, 42, 45]. We briefly

describe how the associated metrics are computed below.

For measuring effective robustness, a baseline OOD accuracy for a given ID accuracy

x is obtained by fitting a log-linear curve β(x) over the set of ID and OOD accuracies of

standard models, i.e. {f s
1 , f

s
2 , . . . f

s
n} where f s = (accsid, acc

s
ood). The curve is defined as:

β(x) = σ(w logit(x) + b) (3.1)

where logit(x) = ln 1
1−x

and σ is its inverse. In practice, β(x) is obtained by transform-

ing each point (x, y) → (logit(x), logit(y)) and solving linear regression. To visualize,

(accsid, accsood) are plotted on a scatter plot where x and y axes denote the ID and OOD

accuracies respectively.

Once β(x) is obtained, effective robustness of an intervention1 r applied on the model

f s, i.e. f r = (accrid, acc
r
ood) is defined as:

ρ(f r) = accrood − β(accrid) (3.2)

which describes whether the intervention leads to an OOD accuracy beyond what can be

1We note that for models pre-trained on large external datasets such as CLIP [43], it is questionable what
kind of datasets constitute in or out-of-distribution. Thus, we treat it as an intervention that isn’t included in
the standard set of models (see subsection 3.1.2) used to compute effective and relative robustness.
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expected from achieving a higher ID accuracy.

As noted by [42], an intervention can result in a high positive ρ(f r), indicating effective

robustness, but it can still decrease both ID and OOD accuracies which is obviously not

desirable. Thus, along with effective robustness, we also measure relative robustness which

is defined as:

τ(f r) = accrood − accsood (3.3)

Following [42], an intervention is said to improve robustness if it is both effectively and

relatively robust, i.e. ρ(f r) > 0 and τ(f r) > 0. As seen in our experiments, interventions

often lack simultaneous effective and relative robustness across different low-shot regimes.

We refer to ρ(f r) as ρ and τ(f r) as τ for simplicity.

3.3 Results

From existing literature on self-supervised learning (SSL) and out-of-distribution (OOD)

robustness, we seem to arrive at the following conclusions for robustness in the full-shot

regime: (1) Amongst IN1k pre-trained models, SSL ViTs are more robust with the recent

ones being better [22, 23]. (2) Without additional interventions, zero-shot models such as

CLIP [43] provide superior robustness than ImageNet pre-trained ones. (3) The robustness

of such models can be improved further with recent robustness interventions [44, 45, 46].

In our work [2], we question each of these observations for robustness in the low-shot

regimes described in subsection 3.1.1. We briefly summarize our findings below. 2

3.3.1 ImageNet Pre-Trained Model Comparison

We compare ImageNet (IN1k) pre-trained models with similar number of trainable pa-

rameters in low-shot regimes with respect to absolute performance on in-domain (ID) and

2We train the models to near completion, i.e. 98− 100% training accuracy and select the checkpoint with
the best in-domain (ID) validation performance. We follow prior works [23, 41, 45] for design choices and
hyperparameters, and perform a grid search over epochs, learning rates, and weight decay whenever feasible.
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Table 3.1: Comparison of IN1k pre-trained self-supervised (SSL) ViTs. No single initialization
or model size outperforms others on average across low-shot regimes on the different datasets.

ImageNet iWildCam Camelyon

ID OOD ID OOD ID OOD

1 MSN ViTS-16 [23] 58.99 21.51 26.41 19.99 83.62 75.67
2 DINO ViTS-16 [21] 53.78 19.09 24.78 19.75 88.08 85.09
3 MSN ViTB-16 [23] 61.40 22.81 24.78 19.65 86.40 78.84
4 DINO ViTB-16 [21] 56.72 21.98 27.40 19.82 86.93 84.33

out-of-distribution (OOD) shifts in Figure 3.3. We see that self-supervised (SSL) ViTs

generally outperform CNNs and the supervised counterparts on both ID and OOD shifts.

Next, we vary the initialization and model size of IN1k pre-trained SSL ViTs and show

the average performance across low-shot regimes in Table 3.1. No single initialization or

model size works better for the different datasets, with MSN ViTB-16 performing better

on both ID and OOD shifts on ImageNet and DINO ViTS-16 on Camelyon. Thus, while

SSL ViTs are more robust than CNNs and supervised counterparts, no single initialization

or model size works better in low-shot regimes across datasets.

3.3.2 Pre-training Data Scale and Strategy

In Table 3.2, we compare IN1k pre-trained SSL ViTs with the models pre-trained on larger

datasets where applicable, i.e. CLIP ViT [43] and ImageNet-21k [79] (IN21k) supervised

ViT [24]. For a fair comparison, we use the ViTB-16 architecture for all models. It can be

seen that while zero-shot CLIP performs significantly better on ImageNet, IN1k pre-trained

DINO outperforms other models on iWildCam and Camelyon. Thus, without additional

robustness interventions and in low-shot regimes, models pre-trained on large and external

datasets such as CLIP [43] provide superior robustness than ImageNet pre-trained models

on ImageNet, but not on other datasets such as iWildCam and Camelyon.
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Figure 3.3: Comparison of IN1k pre-trained architectures and initializations. With similar
number of parameters, self-supervised (SSL) ViTs generally perform better on both ID and OOD
shifts compared to SSL CNNs and the supervised counterparts where applicable.
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Figure 3.4: Effect of robustness interventions on ImageNet. Plots (a), (b), and (c) show per-
formance of interventions in low-shot regimes (subsection 3.1.1). Plot (d) shows performance of
interventions in the full-shot regime. Interventions located above the line (ρ > 0) and in the blue
region (τ > 0) are said to improve robustness (section 3.2). Interventions largely improve robust-
ness in low-shot regimes with MSN ViTB-16 and in all data regimes with CLIP ViTB-16.

Figure 3.5: Effect of robustness interventions on iWildCam. Interventions often fail to improve
robustness in both the full and low-shot regimes with MSN ViTB-16. Only WiSE-FT with CLIP
ViTB-16 improves robustness in all data regimes.

Figure 3.6: Effect of robustness interventions on Camelyon. Interventions often improve ro-
bustness in the full-shot regime with both MSN and CLIP ViTB-16 but fail to do so in extreme or
moderate low-shot regimes, except WiSE-FT with CLIP ViTB-16.
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Table 3.2: Comparison between ViTs pre-trained on different datasets. On average across low-
shot regimes, ImageNet pre-trained SSL ViT’s such as DINO are worse than CLIP on both ID and
OOD shifts on ImageNet. However, it performs significantly better than CLIP and ImageNet-21k
supervised ViT on iWildCam and Camelyon datasets.

ImageNet iWildCam Camelyon

ID OOD ID OOD ID OOD

1 CLIP zero shot [43, 45] 67.93 57.37 9.67 16.82 50.48 51.55
2 CLIP [43] 50.8 27.50 23.75 19.10 84.9 77.3
3 Supervised (IN21k) [24] N/A N/A 16.84 16.90 85.18 81.07
4 Supervised (IN1k) [66] N/A N/A 22.27 18.57 83.35 83.24
5 MSN (IN1k) [23] 61.40 22.81 24.78 19.65 86.40 78.84
6 DINO (IN1k) [21] 56.72 21.98 27.40 19.82 86.93 84.33

3.3.3 Effect of Robustness Interventions

We now use the effective and relative robustness framework (see section 3.2) for observing

the effect of robustness interventions described in subsection 3.1.3. Unless stated oth-

erwise, we use MSN as a reference and ViTB-16 architecture for a fair comparison. We

apply these interventions on both MSN and CLIP and present the dataset-wise observations

for ImageNet in Figure 3.4, iWildCam in Figure 3.5, and Camelyon in Figure 3.6.

Most interventions provide large robustness improvements on ImageNet with both MSN

and CLIP in all data regimes. Whereas on iWildCam, interventions are often not effectively

robust with MSN and only WiSE-FT [45] with CLIP improves robustness in both the full

and low-shot regimes. On Camelyon, most interventions improve relative robustness in the

full-shot regime with MSN and both effective and relative robustness with CLIP. However,

except WiSE-FT with CLIP, they fail to do so in the extreme or moderate low-shot regimes.

Thus, with additional interventions, robustness in the full-shot regime doesn’t imply that in

the low-shot regimes across different datasets such as iWildCam and Camelyon.

Overall, we study robustness to several natural distribution shifts in low-shot regimes,

which addresses the gap in the literature and marks the first in-depth study of its kind. From

our evaluations, we observe that: (1) Amongst ImageNet pre-trained initializations, self-

supervised ViTs are often more robust in low-shot regimes across different datasets but the
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best initialization or model size is dataset dependent. (2) Without additional interventions,

models pre-trained on large external datasets such as CLIP can be much more robust on

ImageNet but not on other datasets such as iWildCam and Camelyon. (3) Depending on

the initialization, robustness interventions fail to improve robustness in the full-shot regime

or in different low-shot regimes on such datasets. These results demonstrates that con-

ventional wisdom for robustness to natural distribution shifts in the full-shot regime (see

section 3.3) might not apply in the low-shot regimes. We hope to motivate researchers to

focus on this problem of practical importance.
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CHAPTER 4

LIMITATIONS AND DISCUSSION

We note that there are some key issues and limitations in different works on unsupervised

domain adaptation (UDA) and our work on low-shot robustness to natural shifts. We dis-

cuss them in the following sections, and later present our thoughts on the broader out-of-

distribution (OOD) generalization problem informed by these works.

4.1 PACMAC and unsupervised domain adaptation

While PACMAC [1] works better than competing methods with self-supervised (SSL) ViTs

such as MAE [22] and DINO [21], we find that it heavily underperforms with supervised

ViT compared to methods such as TVT [16]. Interestingly however, the label overlap

between ImageNet-21k [79] and the standard UDA benchmarks, i.e. DomainNet [50, 51],

OfficeHome [49], and VisDA [52] is almost 100%. This is concerning because the UDA

setting assumes that labelled images from target domain are inaccessible, which doesn’t

seem to hold in practice. Thus, SSL models could be a fairer initialization choice.

Researchers have also shown that the performance-wise order of UDA methods is heav-

ily dependent on pre-trained initializations [15] and datasets [41]. Also, it is possible that

methods such as SENTRY [47] can perform better with in-domain SSL pre-training and

a more extensive search over hyperparameters. Therefore, we believe that our use of SSL

ViTs and benchmarking existing UDA methods with them is an equally (if not more) im-

portant contribution than PACMAC itself.
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4.2 Low-shot robustness to natural distribution shifts

Several other directions could be explored for robustness to natural distribution shifts in

low-shot regimes. First, collecting unlabelled in-domain data might be feasible even for

settings such as iWildCam [28] and Camelyon [29]. As seen from recent works in UDA

[27, 1], in-domain SSL pre-training can provide significant improvements with unlabelled

OOD data. However, pre-training schedules can be time and resource consuming [20] and

the objectives of SSL methods might not be suitable for class imbalanced datasets [80].

Second, out-of-distribution (OOD) performance might be sensitive to different kinds of

augmentations and loss functions. While we implicitly incorporate some of them as a part

of robustness interventions such as Model Soups [46], separately analyzing their effect on

different datasets and data regimes could be an interesting direction for future work.

4.3 Thoughts on out-of-distribution generalization

Computer vision community has studied out-of-distribution (OOD) generalization (see [81])

in related but distinct problem settings, such as unsupervised domain adaptation and robust-

ness to distribution shifts. However, differences in factors such as datasets and pre-trained

models make it difficult to arrive at any general conclusions for OOD generalization. De-

velopment and adoption of benchmarks such as WILDS [41] that control for such factors

can greatly improve our understanding and lead to better generalization methods.

Nonetheless, vision-language models pre-trained on large-scale datasets such as CLIP

[43] provide unprecedented robustness gains to several OOD shifts, especially when com-

bined with recent fine-tuning methods [44, 45, 46] that can possibly be augmented with

access to additional unlabelled data. Recent work [82] also attempts to make the zero-

shot decisions of such models more interpretable with the help of prompts obtained from

large language models such as GPT-3 [83]. Combining such techniques with the advanced

fine-tuning methods could be a highly interesting and useful direction for future work.
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CHAPTER 5

CONCLUSION

We now conclude this thesis on evaluating visual classification models on out-of-distribution

(OOD) shifts with limited training data. Through our experiments described in Chapters 2

and 3, we provide short answers to the key questions raised in Chapter 1, section 1.1.

Q1. Do recent UDA methods also improve performance with self-supervised (SSL) ViTs?

A: While some UDA methods fail to improve upon the source-only baseline with self-

supervised (SSL) ViTs [21, 22], our implementations of recent methods [27, 47] that

were primarily meant for CNNs also provide improvements for SSL ViTs.

Q2. Can the emergent properties of SSL ViTs [21] lead to a better adaptation method?

A: Yes. We propose a novel selective self-training approach called PACMAC in our

work [1] which uses the SSL ViT’s attention mechanism for masking based consistency.

PACMAC performs better or on-par with the competing methods on standard benchmarks.

Q3. Does a single model provide better robustness across datasets in low-shot regimes?

A: No. Amongst ImageNet (IN1k) pre-trained models, SSL ViTs [21, 23] are generally

more robust than CNNs [68, 21] and supervised counterparts [69, 66], but no single

model performs better across datasets. Similarly, CLIP [43] performs significantly better

than other models on both ID and OOD shifts on ImageNet, but IN1k pre-trained DINO

[21] outperforms others on iWildCam [28] and Camelyon [29] datasets.

Q4. Does robustness in the full-shot regime imply that in the low-shot regimes?

A: No. While most robustness interventions [44, 46, 67] largely improve robustness in

both the full and low-shot regimes on ImageNet, depending on the initialization they fail

to do so in the full-shot or in different low-shot regimes on iWildCam and Camelyon.
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We firmly believe that state-of-the-art deep learning models should be evaluated on

diverse out-of-distribution (OOD) shifts when the amount of data available for fine-tuning

is limited (i.e. ∼ 103−104 images) as it reflects a practical scenario which can be useful for

practitioners. Overall, this thesis demonstrates that (1) such models can be better utilized

for unsupervised domain adaptation [1] and (2) conventional wisdom for OOD robustness

(see section 3.3) might not apply when amount of fine-tuning data is not as high [2]. We

hope to motivate future researchers to also focus on this setting of practical importance.
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